CSCI 2570 Introduction to Nanocomputing

Coded Computation III

John E Savage

Lecture Topic

- This talk is based on Dan Spielman's paper Highly Fault-Tolerant Parallel Computation Proces 37th Annl IEEE Conf. Foundations of Computer Science, pp. 154-163, 1996.
- Spielman's goal: To realize circuits with unreliable gates more efficiently than the "von Neumann" method.
- **The approach:** To replace the repetition code with a more efficient one.

Lect 20 Coded Computation III

Computing with Encoded Data

- Recall $\sigma_{i,j}^* = \phi(\sigma_{i,j-1}, \sigma_{i+d,j-1}, w_{i,j})$ on j^{th} step where $\phi: S^3 \rightarrow S$ is next-state function of a processor.
- The codewords Σ_j , Σ_j^d and W_j contain current state of a node, its neighbor and its instruction. We can apply ϕ to components in *S*, not those in *F*.
- To handle values in *F* not *S*, extend ϕ to the interpolation polynomial $\Phi(r,s,t)$, where *r*,*s*,*t* in *F* such that for *i*,*j*,*k* in *H*, $\Phi(i,j,k) = \phi(\sigma^i,\sigma^j,\sigma^k)$ where $\sigma^i,\sigma^j,\sigma^k$ are elements of *S*.

Computing with Encoded Data

To handle values in *F* not *S*, extend φ to the interpolation polynomial Φ(*r*,*s*,*t*), where *r*,*s*,*t* in *F* such that for *h_i*,*h_j*,*h_k* in *H*, Φ(*h_i*,*h_j*,*h_k*) = φ(σⁱ,σ^j,σ^k) where σⁱ,σ^j,σ^k are corresponding elements of *S*.

• Form

$$\Phi(r,s,t) = \sum_{i,j,k} \phi(\sigma^i, \sigma^j, \sigma^k) \frac{\prod_{u \neq i} (r-h_t)}{\prod_{u \neq i} (h_i - h_t)} \frac{\prod_{u \neq j} (s-h_t)}{\prod_{u \neq j} (h_i - h_t)} \frac{\prod_{u \neq i} (r-h_t)}{\prod_{u \neq i} (h_i - h_t)}$$

Lect 20 Coded Computation III

CSCI 2570 © John E Savage

Encoded Hypercube Computation

- Σ_j and W_j are RS codewords. Is Σ_j^d also RS? Is Σ_j^d the set of values of a polynomial over F?
- Index elements of the original hypercube on N = 2ⁿ nodes by H = GF(2ⁿ). Let F = GF(2^m).
- Index of neighbor in direction *d* is obtained by adding β , an *n*-tuple with a single 1, $\beta \in H \subseteq F$.
- Adding β to elements in *F* permutes codeword components. RS interpolation polynomial for Σ_j is mapped to another interpolation polynomial. Thus, Σ_j^d is another RS code with polynomial of same degree.

Putting It All Together

- When no errors at each step, RS codewords Σ_j = {m_j(i) for i ∈ F}, Σ_j^d = {m_j(i+β) for i ∈ F}, and W_j = {n_j(i) for i ∈ F} are created.
- Compute by extending $\sigma_{i,j}^* = \phi(\sigma_{i,j-1}, \sigma_{i+d,j-1}, w_{i,j})$ to $\Phi(m_j(x), m_j(x+\beta), n_j(x))$ for $x \in F$ and applying it.
- Let $c = \text{degree}(\Phi)$. Then, $\Phi(m_j(x), m_j(x+\beta), n_j(x))$ has degree c(N-1) and its values over F form an RS codeword of higher degree.

Error Models

- Errors occur independently on gates during the computation of Φ or during degree reduction.
- Conditions needed on coded computation:
 - Encode step inputs and outputs with same code.
 - Design step operations so that a fraction ≤ θ of outputs are in error for each step, θ =O(ε), with probability p.

Degree Reduction

- Decode RS codeword resulting from computation.
- Re-encode new states using the original RS code.
- Do the resulting operations satisfy all the requirements?
- First condition holds by design.
- Second condition holds if
 - Errors not compounded (von Neumann); let error rate= θ
 - The RS code based on Φ can correct enough errors.
 - If $\theta \leq (|F| c(|H|-1))/2$, each step decodes correctly.
 - Probability p depends on code length |F| and θ .

Extension to Two Dimensions

- Spielman replaces 1D RS code with a 2D RS code for two reasons:
 - To keep the size of the decoder small, and
 - To ensure that errors experienced by a decoder are statistically independent.
 - Use separate decoder for each row/column RS code
 - Decoding error in one dimension causes many errors in decoder output but only one error in the other dimension.

Two Dimensional RS Code

- 2D RS obtained from 2D interpolation polynomials *m*(*x*,*y*), where (*x*,*y*) in *H*². (Replace *H* by *H*².)
- A degree reduction is done in two steps:
 - Degree reduce on rows; reduce on columns
 - Must show correctness.
 - Can't correct as many errors but decoder smaller.

Deterministic RS Decoding Algorithm

Theorem The encoding and decoding functions $E_{H,F}: F^H \to F^F$ and $D_{H,F}: F^F \to F^H \cup \{?\}$ for RS codes can be computed by circuits of size $|F| \log^{O(1)}|F|$. Corrects $k \leq (|F| - |H|)/2$ errors.

Proof Due to Justesen [76] and Sarwate [77].

Kaltofen-Pan Probabilistic RS Decoding Algorithm

- **Theorem** The decoding function $D_{H,F}^k$ can be computed by a **randomized** parallel algorithm that takes $\log^{O(1)} |F|$ time on $(k^2 + |F|) \log^{O(1)} |F|$ processors to correct $k \le (|F| - |H|)/2$ errors. The algorithm succeeds with prob. 1-1/|*F*|.
- Spielman uses this algorithm with $k = \sqrt{|F|}$ to keep number of processors reasonable.

Decoding of Noisy Computation

Lemma If a) each column in 2D RS code has at most fraction β errors, b) fraction ϵ of degree reductions fail at each stage, and c) bivariate ϕ has degree *c*, a k-error correcting decoder will produce a result that has at most fraction ϵ of outputs in error if $k > \max(2\beta,\epsilon)|F|$ and $c|H| < (1-\epsilon)|F|$.

Proof ϕ combines two words with fraction β errors to produce one with fraction 2β errors. Correct by columns, leaving only errors by decoding circuits. Correct by rows, leaving only errors by decoding circuits. Need $c|H| < (1 - \epsilon)|F|$ to ensure that code is RS. (It must be result of interpolating data.)

Lect 20 Coded Computation III

Putting It All Together

- Use either Kaltofen-Pan decoder (KP) that corrects *k* =_√|*F*| errors or Justesen-Sarwate algorithm (JS) correcting *k* ≤ (|*F*| − |*H*|)/2 errors.
- KP: $\log^{O(1)} w$ steps & correct $|F|^{1/2} = w^{1/4}$ errors
- JS: Levelize circuit where w is circuit width.
- Both do $|F| \log^{O(1)} |F|$ operations per time step.
- Send *k* sets decoded outputs to majority gates
- Failure if $\geq \frac{1}{2}$ majority gate inputs are wrong.