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Lecture Topic

e This talk is based on Dan Spielman’s Highly
Fault-Tolerant Parallel Computation Procs 37th
Annl IEEE Conf. Foundations of Computer Science,
pp. 154-163, 1996.

e Spielman’s goal: To realize circuits with unreliable
gates more efficiently than the “von Neumann”
method.

e The approach: To replace the repetition code with a
more efficient one.
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Computing with Encoded Data

e Recall o * = ¢(07; 1 ,0i145.1,W,;) ON [ step where
$.:S3-S is next-state function of a processor.

e The codewords %, Zjd and W, contain current state of
a node, its neighbor and its instruction. We can apply
¢ to components in S, not those In F.

e To handle values in F not S, extend ¢ to the
interpolation polynomial ®(r,s,t), where r,s,t in F such
that for i,j,k in H, ®(i,j,k) = ¢(c",07,0%) where o',07,0¥
are elements of S.
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Computing with Encoded Data

e To handle values in F not S, extend ¢ to the
interpolation polynomial ®(r,s,t), where r,s,t in
F such that for h;,h;,h, in H, ®(h;,h;h,) =

¢(o,0,0¥) where ¢',0J,0% are corresponding
elements of S.

e Form

_ i g Hugei(r=ht) Tlugej(s=he) 1luzi(r—he)
P(r,s,t) = Zi,j,k ¢(o ’U]’Ok)HuZ(hi_ht) Hu;zy(hi—ht) HuZ(hi_ht)
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Encoded Hypercube
Computation

e X and W, are RS codewords. Is % also RS? Is % the
set of values of a polynomial over F?

e Index elements of the original hypercube on N = 2"
nodes by H = GF(2"). Let F = GF(2™).

e Index of neighbor in direction d is obtained by adding
B, an n-tuple with asingle 1, e HC F .

e Adding g to elements in F permutes codeword
components. RS interpolation polynomial for Z; is
mapped to another interpolation polynomial. Thus, Zjd
Is another RS code with polynomial of same degree.
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Putting It All Together

e When no errors at each step, RS codewords %, =
{m;(i) for i e F}, Zjd = {m,(i+p) for i e F}, and W, = {n,(i)
for | e F} are created.

e Compute by extending ;" = ¢(07 1 ,07q;.0,W;)) O
d(m,(x),m,(x+p),n(x)) for x e F and applying it.

o Letc = degree(®). Then, &(m,(x),m,(x+p),n(x)) has
degree c¢(N-1) and its values over F form an RS
codeword of higher degree.
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Error Models

e Errors occur independently on gates during
the computation of ® or during degree
reduction.

e Conditions needed on coded computation:

Encode step inputs and outputs with same code.

Design step operations so that a fraction < 6 of
outputs are in error for each step, 6 =0O(¢), with
probability p.
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Degree Reduction

e Decode RS codeword resulting from computation.
e Re-encode new states using the original RS code.

e Do the resulting operations satisfy all the
requirements?

e First condition holds by design.

e Second condition holds if
Errors not compounded (von Neumann); let error rate= 6
The RS code based on ® can correct enough errors.
If 6 < (|F| - c(|H|-1))/2, each step decodes correctly.
Probability p depends on code length |F| and 6.
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Extension to Two Dimensions

e Spielman replaces 1D RS code with a 2D RS

code for two reasons:
To keep the size of the decoder small, and
To ensure that errors experienced by a decoder
are statistically independent.

Use separate decoder for each row/column RS code

Decoding error in one dimension causes many errors
iIn decoder output but only one error in the other
dimension.
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Two Dimensional RS Code

e 2D RS obtained from 2D interpolation
polynomials m(x,y), where (x,y) in H?.
(Replace H by H2.)

e A degree reduction is done in two steps:
Degree reduce on rows; reduce on columns
Must show correctness.
Can’t correct as many errors but decoder smaller.
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Deterministic RS Decoding
Algorithm

Theorem The encoding and decoding functions
Ene:F'>Frand D, : F- - F7 U {?} for RS
codes can be computed by circuits of size
IF| log®M|F|. Corrects k < (|F| - |H|)/2 errors.

Proof Due to Justesen [76] and Sarwate [77].

Lect 20 Coded Computation IlI CSCI 2570 © John E Savage 11



Kaltofen-Pan Probabilistic RS
Decoding Algorithm

Theorem The decoding function D% can be
computed by a randomized parallel algorithm
that takes 10g°® |F|time on (x2 + |F]) 1og?™) |F|
processors to correct « < (|F| - |H|)/2 errors. The
algorithm succeeds with prob. 1-1/|F|.

e Spielman uses this algorithm with k = I¥I to
keep number of processors reasonable.
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Decoding of Noisy
Computation

Lemma If a) each column in 2D RS code has at most
fraction (8 errors, b) fraction e of degree reductions
fail at each stage, and c) bivariate ¢ has degree c, a
k-error correcting decoder will produce a result that
has at most fraction e of outputs in error if k >
max(26,€)|F| and c|H| < (1- €)|F|.

Proof ¢ combines two words with fraction (8 errors to
produce one with fraction 28 errors. Correct by
columns, leaving only errors by decoding circuits.
Correct by rows, leaving only errors by decoding
circuits. Need c|H| < (1- €)|F| to ensure that code is
RS. (It must be result of interpolating data.)

Lect 20 Coded Computation IlI CSCI 2570 © John E Savage 13



Putting It All Together

Use either Kaltofen-Pan decoder (KP) that corrects
k =\/|F| errors or Justesen-Sarwate algorithm (JS)
correcting k£ < (|F| — |H|)/2 errors.

KP: log®") w steps & correct |F|"? =w'* errors
JS: Levelize circuit where w is circuit width.
Both do |F| log®°")|F| operations per time step.

Send k sets decoded outputs to majority gates
Failure if = 72 majority gate inputs are wrong.
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