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Lecture Topic
This talk is based on Dan Spielman’s paper Highly 
Fault-Tolerant Parallel Computation Procs 37th 
Annl IEEE Conf. Foundations of Computer Science, 
pp. 154-163, 1996.

Spielman’s goal: To realize circuits with unreliable 
gates more efficiently than the “von Neumann”
method.

The approach: To replace the repetition code with a 
more efficient one.
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Computing with Encoded Data
 Recall si,j* = f(si,j-1 ,si+d,j-1,wi,j) on jth step where      
f:S3ØS is next-state function of a processor.

The codewords Sj, Sj
d and Wj contain current state of 

a node, its neighbor and its instruction. We can apply 
f to components in S, not those in F.

To handle values in F not S, extend f to the 
interpolation polynomial F(r,s,t), where r,s,t in F such 
that for i,j,k in H, F(i,j,k) = f(si,sj,sk) where si,sj,sk

are elements of S.
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Computing with Encoded Data

To handle values in F not S, extend f to the 
interpolation polynomial F(r,s,t), where r,s,t in 
F such that for hi,hj,hk in H, F(hi,hj,hk) = 
f(si,sj,sk) where si,sj,sk are corresponding 
elements of S.

Form 
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Encoded Hypercube 
Computation

Sj and Wj are RS codewords. Is Sj
d also RS? Is Sj

d the 
set of values of a polynomial over F?
Index elements of the original hypercube on N = 2n

nodes by H = GF(2n). Let F = GF(2m). 
Index of neighbor in direction d is obtained by adding 
b, an n-tuple with a single 1, b e H Œ F .
Adding b to elements in F permutes codeword 
components. RS interpolation polynomial for Sj is 
mapped to another interpolation polynomial. Thus, Sj

d

is another RS code with polynomial of same degree.
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Putting It All Together
When no errors at each step, RS codewords Sj = 
{mj(i) for i e F}, Sj

d = {mj(i+b) for i e F}, and Wj = {nj(i) 
for i e F} are created.

Compute by extending si,j* = f(si,j-1 ,si+d,j-1,wi,j) to    
F(mj(x),mj(x+b),nj(x)) for x e F and applying it.

Let c = degree(F). Then, F(mj(x),mj(x+b),nj(x)) has 
degree c(N-1) and its values over F form an RS 
codeword of higher degree.
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Error Models

Errors occur independently on gates during 
the computation of F or during degree 
reduction.
Conditions needed on coded computation:

Encode step inputs and outputs with same code.
Design step operations so that a fraction ≤ q of 
outputs are in error for each step, q =O(ε), with 
probability p.



Lect 20 Coded Computation III CSCI 2570 © John E Savage 8

Degree Reduction
Decode RS codeword resulting from computation.
Re-encode new states using the original RS code.
Do the resulting operations satisfy all the 
requirements?
First condition holds by design.
Second condition holds if 

Errors not compounded (von Neumann); let error rate= q
The RS code based on F can correct enough errors.
If q ≤ (|F| - c(|H|-1))/2, each step decodes correctly.
Probability p depends on code length |F| and q.
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Extension to Two Dimensions

Spielman replaces 1D RS code with a 2D RS 
code for two reasons:

To keep the size of the decoder small, and 
To ensure that errors experienced by a decoder 
are statistically independent.

Use separate decoder for each row/column RS code
Decoding error in one dimension causes many errors 
in decoder output but only one error in the other 
dimension.
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Two Dimensional RS Code

2D RS obtained from 2D interpolation 
polynomials m(x,y), where (x,y) in H2. 
(Replace H by H2.)

A degree reduction is done in two steps:
Degree reduce on rows; reduce on columns
Must show correctness.
Can’t correct as many errors but decoder smaller.
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Deterministic RS Decoding 
Algorithm

Theorem The encoding and decoding functions 
EH,F : FH Ø FF and DH,F : FF Ø FH » {?} for RS 
codes can be computed by circuits of size   
|F| logO(1)|F|. Corrects                       errors.

Proof Due to Justesen [76] and Sarwate [77].
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Kaltofen-Pan Probabilistic RS 
Decoding Algorithm

Theorem The decoding function         can be 
computed by a randomized parallel algorithm 
that takes              time on                          
processors to correct errors. The 
algorithm succeeds with prob. 1-1/|F|.

Spielman uses this algorithm with k =  to 
keep number of processors reasonable.
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Decoding of Noisy 
Computation
Lemma If a) each column in 2D RS code has at most 

fraction  b errors, b) fraction  e of degree reductions 
fail at each stage, and c) bivariate f has degree c, a 
k-error correcting decoder will produce a result that 
has at most fraction  e of outputs in error if k > 
max(2b,e)|F| and c|H| < (1- e)|F|.

Proof f combines two words with fraction  b errors to 
produce one with fraction  2b errors. Correct by 
columns, leaving only errors by decoding circuits. 
Correct by rows, leaving only errors by decoding 
circuits. Need c|H| < (1- e)|F| to ensure that code is 
RS. (It must be result of interpolating data.)
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Putting It All Together
Use either Kaltofen-Pan decoder (KP) that corrects 
k =       errors or Justesen-Sarwate algorithm (JS) 
correcting                           errors.
KP: logO(1) w steps & correct |F|1/2 =w1/4 errors
JS: Levelize circuit where w is circuit width. 
Both do |F| logO(1)|F| operations per time step.

Send k sets decoded outputs to majority gates
Failure if ≥ ½ majority gate inputs are wrong.


