
CSCI 2570
Introduction to

Nanocomputing

Coded Computation III

John E Savage

Lect 20 Coded Computation III CSCI 2570 © John E Savage 2

Lecture Topic
This talk is based on Dan Spielman’s paper Highly
Fault-Tolerant Parallel Computation Procs 37th
Annl IEEE Conf. Foundations of Computer Science,
pp. 154-163, 1996.

Spielman’s goal: To realize circuits with unreliable
gates more efficiently than the “von Neumann”
method.

The approach: To replace the repetition code with a
more efficient one.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 3

Computing with Encoded Data
 Recall si,j* = f(si,j-1 ,si+d,j-1,wi,j) on jth step where
f:S3ØS is next-state function of a processor.

The codewords Sj, Sj
d and Wj contain current state of

a node, its neighbor and its instruction. We can apply
f to components in S, not those in F.

To handle values in F not S, extend f to the
interpolation polynomial F(r,s,t), where r,s,t in F such
that for i,j,k in H, F(i,j,k) = f(si,sj,sk) where si,sj,sk

are elements of S.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 4

Computing with Encoded Data

To handle values in F not S, extend f to the
interpolation polynomial F(r,s,t), where r,s,t in
F such that for hi,hj,hk in H, F(hi,hj,hk) =
f(si,sj,sk) where si,sj,sk are corresponding
elements of S.

Form

Lect 20 Coded Computation III CSCI 2570 © John E Savage 5

Encoded Hypercube
Computation

Sj and Wj are RS codewords. Is Sj
d also RS? Is Sj

d the
set of values of a polynomial over F?
Index elements of the original hypercube on N = 2n

nodes by H = GF(2n). Let F = GF(2m).
Index of neighbor in direction d is obtained by adding
b, an n-tuple with a single 1, b e H Œ F .
Adding b to elements in F permutes codeword
components. RS interpolation polynomial for Sj is
mapped to another interpolation polynomial. Thus, Sj

d

is another RS code with polynomial of same degree.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 6

Putting It All Together
When no errors at each step, RS codewords Sj =
{mj(i) for i e F}, Sj

d = {mj(i+b) for i e F}, and Wj = {nj(i)
for i e F} are created.

Compute by extending si,j* = f(si,j-1 ,si+d,j-1,wi,j) to
F(mj(x),mj(x+b),nj(x)) for x e F and applying it.

Let c = degree(F). Then, F(mj(x),mj(x+b),nj(x)) has
degree c(N-1) and its values over F form an RS
codeword of higher degree.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 7

Error Models

Errors occur independently on gates during
the computation of F or during degree
reduction.
Conditions needed on coded computation:

Encode step inputs and outputs with same code.
Design step operations so that a fraction ≤ q of
outputs are in error for each step, q =O(ε), with
probability p.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 8

Degree Reduction
Decode RS codeword resulting from computation.
Re-encode new states using the original RS code.
Do the resulting operations satisfy all the
requirements?
First condition holds by design.
Second condition holds if

Errors not compounded (von Neumann); let error rate= q
The RS code based on F can correct enough errors.
If q ≤ (|F| - c(|H|-1))/2, each step decodes correctly.
Probability p depends on code length |F| and q.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 9

Extension to Two Dimensions

Spielman replaces 1D RS code with a 2D RS
code for two reasons:

To keep the size of the decoder small, and
To ensure that errors experienced by a decoder
are statistically independent.

Use separate decoder for each row/column RS code
Decoding error in one dimension causes many errors
in decoder output but only one error in the other
dimension.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 10

Two Dimensional RS Code

2D RS obtained from 2D interpolation
polynomials m(x,y), where (x,y) in H2.
(Replace H by H2.)

A degree reduction is done in two steps:
Degree reduce on rows; reduce on columns
Must show correctness.
Can’t correct as many errors but decoder smaller.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 11

Deterministic RS Decoding
Algorithm

Theorem The encoding and decoding functions
EH,F : FH Ø FF and DH,F : FF Ø FH » {?} for RS
codes can be computed by circuits of size
|F| logO(1)|F|. Corrects errors.

Proof Due to Justesen [76] and Sarwate [77].

Lect 20 Coded Computation III CSCI 2570 © John E Savage 12

Kaltofen-Pan Probabilistic RS
Decoding Algorithm

Theorem The decoding function can be
computed by a randomized parallel algorithm
that takes time on
processors to correct errors. The
algorithm succeeds with prob. 1-1/|F|.

Spielman uses this algorithm with k = to
keep number of processors reasonable.

Lect 20 Coded Computation III CSCI 2570 © John E Savage 13

Decoding of Noisy
Computation
Lemma If a) each column in 2D RS code has at most

fraction b errors, b) fraction e of degree reductions
fail at each stage, and c) bivariate f has degree c, a
k-error correcting decoder will produce a result that
has at most fraction e of outputs in error if k >
max(2b,e)|F| and c|H| < (1- e)|F|.

Proof f combines two words with fraction b errors to
produce one with fraction 2b errors. Correct by
columns, leaving only errors by decoding circuits.
Correct by rows, leaving only errors by decoding
circuits. Need c|H| < (1- e)|F| to ensure that code is
RS. (It must be result of interpolating data.)

Lect 20 Coded Computation III CSCI 2570 © John E Savage 14

Putting It All Together
Use either Kaltofen-Pan decoder (KP) that corrects
k = errors or Justesen-Sarwate algorithm (JS)
correcting errors.
KP: logO(1) w steps & correct |F|1/2 =w1/4 errors
JS: Levelize circuit where w is circuit width.
Both do |F| logO(1)|F| operations per time step.

Send k sets decoded outputs to majority gates
Failure if ≥ ½ majority gate inputs are wrong.

